
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Energy Performance and Thermo-economic Assessment of a Microturbine-based Dual-fuel Gas-biomass Trigeneration System

handle: 11589/250105
Abstract The focus of this paper is on the energy performance and thermo-economic assessment of a small scale (100 kWe) combined cooling, heat and power (CCHP) plant serving a tertiary/residential energy demand fired by natural gas and solid biomass. The plant is based on a modified regenerative micro gas-turbine (MGT), where compressed air exiting the recuperator is externally heated by the hot gases produced in a biomass furnace. The flue gases after the recuperator flow through a heat recovery system (HRS), producing domestic hot water (DHW) at 90 °C, space heating (SH), and also chilled water (CW) by means of an absorption chiller (AC). Different biomass/natural gas ratios and an aggregate of residential end-users in cold, average and mild climate conditions are compared in the thermo-economic assessment, in order to assess the trade-offs between: (i) the lower energy conversion efficiency and higher investment cost when increasing the biomass input rate; (ii) the higher primary energy savings and revenues from feed-in tariffs available for biomass electricity exported into the grid; and (iii) the improved energy performance, sales revenue and higher investment and operational costs of trigeneration. The results allow for a comparison of the energy performance and investment profitability of the selected system configuration, as a function of the heating/cooling demand intensity, and report a global energy efficiency in the range of 25-45%, and IRR in the range of 15-20% assuming the Italian subsidy framework.
- Imperial College London United Kingdom
- Polytechnic University of Bari Italy
- University of Bari Aldo Moro Italy
- Polytechnic University of Bari Italy
- Instituto Politécnico Nacional Mexico
microturbine, biomass, POWER-PLANTS, trigeneration, CHP, absorption chillers, cogeneration, HEAT, ABSORPTION-REFRIGERATION SYSTEMS, CHP; cogeneration; absorption chillers; microturbine; biomass; trigeneration, CYCLE, OPTIMIZATION, NATURAL-GAS
microturbine, biomass, POWER-PLANTS, trigeneration, CHP, absorption chillers, cogeneration, HEAT, ABSORPTION-REFRIGERATION SYSTEMS, CHP; cogeneration; absorption chillers; microturbine; biomass; trigeneration, CYCLE, OPTIMIZATION, NATURAL-GAS
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
