
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Numerical study of using different Organic Rankine cycle working fluids for engine coolant energy recovery

Engine waste heat recovery technology especially Organic Rankine cycle (ORC) has been widely studied in order to achieve higher overall thermal efficiency, reduce the engine emissions and improve the fuel economy. The coolant energy occupies around 30% of the fuel energy can be used as the heat source for ORC system. This paper studies thermal status of the engine heated components when using different ORC working fluids as engine coolant to avoid the heat loos using heat exchanger to transfer coolant to the ORC fluid. A Solid-Liquid Conjugated Heat Transfer (SLCHT) calculation method is developed to calculate the heat transfer inside the engine, which can solve the temperature field of both solid zone and fluid zone. The simulation results have been validated by the experimental data from a 6-cylinder medium duty diesel engine, when water is the coolant in the system. The simulation model is then used to predict the temperature profile using different ORC working fluids and investigate the influence of different ORC working fluids on the cooling effects of the engine heated parts. The maximum temperature of the heated components has been selected as the evaluation parameters. The results reveals that applying selected ORC working fluids in engine as coolant is not practical under the designed conditions, which will make the engine overheated. Further investigation showed that increasing mass flow rate of the coolant can decrease the thermal status of the heated components but still cannot meet the cooling demands even under 200% of the original mass flow rate. The variations of the coolant outlet temperature and exergy were also analysed.
- University of Newcastle Australia Australia
- Zhejiang Ocean University China (People's Republic of)
- Zhejiang University China (People's Republic of)
- University of Newcastle Australia Australia
- Zhejiang Ocean University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
