
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
ORC cogeneration systems in waste-heat recovery applications

Abstract The performance of organic Rankine cycle (ORC) systems operating in combined heat and power (CHP) mode is investigated. The ORC-CHP systems recover heat from selected industrial waste-heat fluid streams with temperatures in the range 150 °C – 330 °C. An electrical power output is provided by the expanding working fluid in the ORC turbine, while a thermal output is provided by the cooling water exiting the ORC condenser and also by a second heat-exchanger that recovers additional thermal energy from the heat-source stream downstream of the evaporator. The electrical and thermal energy outputs emerge as competing objectives, with the latter favoured at higher hot-water outlet temperatures and vice versa . Pentane, hexane and R245fa result in ORC-CHP systems with the highest exergy efficiencies over the range of waste-heat temperatures considered in this work. When maximizing the exergy efficiency, the second heat-exchanger is effective (and advantageous) only in cases with lower heat-source temperatures ( 60 °C) giving a fuel energy savings ratio (FESR) of over 40%. When maximizing the FESR, this heat exchanger is essential to the system, satisfying 100% of the heat demand in all cases, achieving FESRs between 46% and 86%.
- Imperial College London United Kingdom
- University of Bari Aldo Moro Italy
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
