
Found an issue? Give us feedback
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
Providing sulfur free syngas to a fuel cell system
Authors: Ramiar Sadegh-Vaziri; Matthaus U. Babler;
Abstract
Abstract Fuel cells are viable alternatives as power backup systems for mini-grids. In this work a case is considered, where the hydrogen fuel to the fuel cells is supplied from biomass gasification. However, the producer gas obtained from biomass gasification needs to be cleaned of impurities and contaminants. In this work we examined the superiority of the hot producer gas cleaning, which results in a better thermal efficiency since the heat loss from the system is reduced. In order to have a viable hot cleaning process, sulfur should be removed at 800°C and this was shown possible by promising primary data from the experiments where H2S was removed down to an acceptable level.
Related Organizations
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
5
Top 10%
Average
Average
gold