
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The Kinetics Studies and Thermal Characterisation of Biomass

This work aims to investigate and develop a method to evaluate and predict the combustion behaviour and combustion efficiency of different biomass commonly used in power plants via simple characterisation methods. 11 types of agricultural and industrial wastes were characterised using thermogravimetric analyser to obtain the derivative thermogravimetric (DTG) data and kinetic parameters. For the samples tested, the initiation temperatures were found to be in the range between 224.39 0 C and 260.33 0 C, whilst the local minimum temperatures between 2 peaks were within the range of 360.36 to 382.74 0 C. It was established that there is a clear, direct relationship between the pre-exponential factor and the temperature interval for the first step of combustion. This trend was apparent and recorded for the 2 heating rates tested. © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) Peer-review under responsibility of the scientific committee of ICAE2018 - The 10th International Conference on Applied Energy.
- Nottingham Trent University United Kingdom
- Institute of New Materials China (People's Republic of)
- University of Nottingham United Kingdom
- University of Nottingham Ningbo China China (People's Republic of)
- University of Nottingham Ningbo China China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
