
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Performance and emission characteristics of diesel engine fueled with rice bran biodiesel and n-butanol

handle: 10419/243566
Performance and emission characteristics of diesel engine fueled with rice bran biodiesel and n-butanol
Due to the depletion of petroleum products and fatal emissions from the tailpipe of diesel engines it has become a need to seek for the alternative of petroleum products for long-term use. Currently, researchers and experts have come to the conclusion that biodiesel along with higher alcohols can be an appropriate substitute for this situation. Former investigations have presented that biodiesel and higher alcohol can help in improving the performance and depreciating harmful exhaust gases in a diesel engine. In the current investigation blends of diesel, rice bran biodiesel and n-butanol were prepared to check its effect on performance and emission characteristics of a diesel engine. Biodiesel was prepared by single stage alkaline transesterification process in this study and after that blends of diesel–biodiesel and diesel–biodiesel-n butanol were prepared as B10, B20, B10 nb10 and B20 nb20. Then these blends were tested in a single cylinder, small utility diesel engine with a rated power output of 3.73 kW to compare them with baseline diesel. Experimental investigation demonstrates that blends of rice bran biodiesel and n-butanol can be used as a fuel in a diesel engine without any change in the engine. Keywords: Diesel engine, Biodiesel, Butanol, Emission
- Lovely Professional University India
- Punjab Technical University India
- Punjab Technical University India
- Kongju National University Korea (Republic of)
- Kongju National University Korea (Republic of)
Diesel engine, ddc:330, Butanol, TK1-9971, Emission, Biodiesel, Electrical engineering. Electronics. Nuclear engineering
Diesel engine, ddc:330, Butanol, TK1-9971, Emission, Biodiesel, Electrical engineering. Electronics. Nuclear engineering
3 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).179 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
