Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Griffith University:...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Reports
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Reports
Article . 2022
Data sources: DOAJ
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Layout and design optimization of ocean wave energy converters: A scoping review of state-of-the-art canonical, hybrid, cooperative, and combinatorial optimization methods

Authors: Danial Golbaz; Rojin Asadi; Erfan Amini; Hossein Mehdipour; Mahdieh Nasiri; Bahareh Etaati; Seyed Taghi Omid Naeeni; +3 Authors

Layout and design optimization of ocean wave energy converters: A scoping review of state-of-the-art canonical, hybrid, cooperative, and combinatorial optimization methods

Abstract

Ocean Wave energy is becoming a prominent technology, which is considered a vital renewable energy resource to achieve the Net-zero Emissions Plan by 2050. It is also projected to be commercialized widely and become a part of the industry that alters conventional energy technologies in the near future. However, wave energy technologies are not entirely yet developed and mature enough, so various criteria must be optimized to enter the energy market. In order to maximize the performance of wave energy converters (WECs) components, three challenges are mostly considered: Geometry, Power Take-off (PTO) parameters, and WECs’ layout. As each of such challenges plays a meaningful role in harnessing the maximum power output, this paper systematically reviews applied state-of-the-art optimization techniques, including standard, hybrid, cooperative, bi-level and combinatorial strategies. Due to the importance of fidelity and computational cost in numerical methods, we also discuss approaches to analyzing WECs interactions’ developments. Moreover, the benefits and drawbacks of the popular optimization methods applied to improve WEC parameters’ performance are summarized, briefly discussing their key characteristics. According to the scoping review, using a combination of bio-inspired algorithms and local search as a hybrid algorithm can outperform the other techniques in layout optimization in terms of convergence rate. A review of the geometry of WECs has emphasized the indispensability of optimizing and balancing design parameters with cost issues in multimodal and large-scale problems.

Countries
United States, Australia
Keywords

670, geometry design, layout optimization, Evolutionary algorithms, Sustainable design, local search methods, Civil engineering, PTO systems, evolutionary algorithms, Wave Energy Converters, swarm intelligence, Optimization algorithms, 620, TK1-9971, optimization algorithms, Geometry design, Electrical engineering. Electronics. Nuclear engineering, Layout optimization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%
Green
gold