
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Hydrological impacts of moderate and high-end climate change across European river basins

Hydrological impacts of moderate and high-end climate change across European river basins
Study region: To provide a picture of hydrological impact of climate change across different climatic zones in Europe, this study considers eight river basins: Tagus in Iberian Peninsula; Emån and Lule in Scandinavia; Rhine, Danube and Teteriv in Central and Eastern Europe; Tay on the island of Great Britain and Northern Dvina in North-Eastern Europe. Study focus: In this study the assessment of the impacts of moderate and high-end climate change scenarios on the hydrological patterns in European basins was conducted. To assess the projected changes, the process-based eco-hydrological model SWIM (Soil and Water Integrated Model) was set up, calibrated and validated for the basins. The SWIM was driven by the bias-corrected climate projections obtained from the coupled simulations of the Global Circulation Models and Regional Climate Models. New hydrological insights for the region: The results show robust decreasing trends in water availability in the most southern river basin (Tagus), an overall increase in discharge in the most northern river basin (Lule), increase in the winter discharge and shift in seasonality in Northern and Central European catchments. The impacts of the high-end climate change scenario RCP 8.5 continue to develop until the end of the century, while those of the moderate climate change scenario RCP 4.5 level-off after the mid-century. The results of this study also confirm trends, found previously with mostly global scale models. Keywords: European rivers, Climate change, Hydrology, Eco-hydrological modelling, Climate change impact, High-end scenarios
Physical geography, QE1-996.5, 550, Geology, High-end scenarios, GB3-5030, Climate change, European rivers, Climate change impact, Hydrology, Eco-hydrological modelling
Physical geography, QE1-996.5, 550, Geology, High-end scenarios, GB3-5030, Climate change, European rivers, Climate change impact, Hydrology, Eco-hydrological modelling
1 Research products, page 1 of 1
- 2021IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).57 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
