Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electrochimica Actaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Electrochimica Acta
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermodynamic derivation of a Butler–Volmer model for intercalation in Li-ion batteries

Authors: Latz, A.; Zausch, J.;

Thermodynamic derivation of a Butler–Volmer model for intercalation in Li-ion batteries

Abstract

Abstract We present an exclusively thermodynamics based derivation of a Butler–Volmer expression for the intercalation exchange current in Li ion insertion batteries. In this first paper we restrict our investigations to the actual intercalation step without taking into account the desolvation of the Li ions in the electrolyte. The derivation is based on a generalized form of the law of mass action for non ideal systems (electrolyte and active particles). To obtain the Butler–Volmer expression in terms of overpotentials, it is necessary to approximate the activity coefficient of an assumed transition state as function of the activity coefficients of electrolyte and active particles. Specific considerations of surface states are not necessary, since intercalation is considered as a transition between two different chemical environments without surface reactions. Differences to other forms of the Butler–Volmer used in the literature [1] , [2] are discussed. It is especially shown, that our derivation leads to an amplitude of the exchange current which is free of singular terms which may lead to quantitative and qualitative problems in the simulation of overpotentials. This is demonstrated for the overpotential between electrolyte and active particles for a half cell configuration.

Country
Germany
Keywords

Chemical engineering, info:eu-repo/classification/ddc/660, 660, ddc:660

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    100
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
100
Top 1%
Top 10%
Top 10%
bronze