Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electrochimica Actaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UCL Discovery
Article . 2017
Data sources: UCL Discovery
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Electrochimica Acta
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigation of Hot Pressed Polymer Electrolyte Fuel Cell Assemblies via X-ray Computed Tomography

Authors: Meyer, Q; Mansor, N; Iacoviello, F; Cullen, PL; Jervis, R; Finegan, D; Tan, C; +3 Authors

Investigation of Hot Pressed Polymer Electrolyte Fuel Cell Assemblies via X-ray Computed Tomography

Abstract

Abstract The hot pressing process for fabricating polymer electrolyte fuel cells membrane electrode assemblies (MEAs) has been widely adopted, yet little is known of its effects on the microstructural properties of the different components of the MEA. In particular, the interaction of the electrolyte, electrode and gas diffusion layer (GDL) due to lamination is difficult to probe as conventional imaging techniques cannot access the internal structure of the MEA. Here, a novel approach is used, which combines characterisation of hot-pressed membrane electrode assemblies using X-ray computed tomography, thermogravimetric analysis, differential scanning calorimetry and atomic force microscopy, with electrochemical performance measurements from polarisation curves and high-frequency impedance spectroscopy. Membrane electrode assemblies hot pressed at 100 °C, 130 °C and 170 °C reveal significant differences in microstructure, which has a consequence for the performance. When hot pressed at 100 °C, which is lower than the glass transition temperature of Nafion (123 °C), the catalyst only partially bonds with the Nafion membrane, leading to increased Ohmic resistance. At 170 °C, the Nafion membrane intrudes into the electrode, forming pinholes, degrading the catalyst layer and filling pores in the GDL. Finally, at 130 °C, the interfacial contact is optimum, with similar roughness factor between the catalyst and Nafion membrane surface, indicating effective lamination of layers.

Country
United Kingdom
Related Organizations
Keywords

roughness factor, Nafion, Electrochemistry, Membrane electrode assembly, CATALYST-LAYER, X-ray computed tomography, Science & Technology, GAS-DIFFUSION LAYER, IMPEDANCE SPECTROSCOPY, hot-pressing, LIQUID WATER TRANSPORT, PERFORMANCE, DEGRADATION, 620, MICROPOROUS LAYER, Physical Sciences, MICRO-POROUS LAYER, PEMFC, MEMBRANE

Powered by OpenAIRE graph
Found an issue? Give us feedback