Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repository of the Cz...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Electrochimica Acta
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Alternative bases to 4-tert-butylpyridine for dye-sensitized solar cells employing copper redox mediator

Authors: Parnian Ferdowsi; Parnian Ferdowsi; Javad Mokhtari; Anders Hagfeldt; Shaik M. Zakeeruddin; Michael Grätzel; Yasemin Saygili; +1 Authors

Alternative bases to 4-tert-butylpyridine for dye-sensitized solar cells employing copper redox mediator

Abstract

Abstract Novel facile synthetic protocol is developed to prepare electrochemically and optically clean Cu(tmby)2TFSI and Cu(tmby)2TFSI2 in a mixture (tmby = 4,4,6,6-tetramethyl-2,2-bipyridine; TFSI = trifluoromethylsufonylimide). This pure Cu(II/I) redox mediator exhibits improved charge-transfer rate at the counterelectrode (PEDOT) and faster diffusion transport in the solution. Four pyridine derivatives: 4-tert-butylpyridine, 2,6-bis-tert-butylpyridine, 4-methoxypyridine and 4-(5-nonyl)pyridine are evaluated as electrolyte additives. Base-specific electrochemical properties of the redox mediator are found for Cu(tmby)22+/+, but not for Co(bpy)33+/2+ which is used as control system. Due to steric hindrance, 2,6-bis-tert-butylpyridine has the smallest influence on the mediator's electrochemistry, but is also ineffective for the VOC enhancement through TiO2 conduction band upshift. Charge-transfer rates at PEDOT surface and diffusion resistances correlate with the basicity (pKa) of the used pyridine derivatives. The dye (Y123)-sensitized solar cells are evaluated by solar conversion performance in addition to electron lifetime, charge extraction and long-term stability tests. The optimization of pyridine bases for the Cu-mediated solar cells represents interplay of basicity and coordination ability. In turn, this allows for tuning of the charge transfer rate at counterelectrode and the mass transport in the electrolyte solution. The 4-(5-nonyl)pyridine is outperforming all the remaining bases in performance metrics of the corresponding solar cells.

Countries
Switzerland, Czech Republic
Keywords

Electrochemical characterization, electrolytes, Dye-sensitized solar cells, shuttle, efficient, Pyridine bases, Copper(II/I) redox mediators, cathodes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%
bronze