Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electrochimica Actaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2019
License: CC BY
Data sources: ZENODO
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Electrochimica Acta
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://dx.doi.org/10.60692/t0...
Other literature type . 2019
Data sources: Datacite
https://dx.doi.org/10.60692/b7...
Other literature type . 2019
Data sources: Datacite
Electrochimica Acta
Article . 2019 . Peer-reviewed
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the non-ideal behaviour of polarised liquid-liquid interfaces

حول السلوك غير المثالي للواجهات السائلة والسائلة المستقطبة
Authors: Marco F. Suárez-Herrera; Marco F. Suárez-Herrera; Micheál D. Scanlon;

On the non-ideal behaviour of polarised liquid-liquid interfaces

Abstract

L'interprétation des données électrochimiques générées à l'interface entre deux solutions d'électrolyte immiscibles (IES), et la réalisation DES IES pour DES applications technologiques, nécessite une connaissance approfondie de l'origine des courants observés (c.-à-d. courants capacitifs, de transfert d'ions ou d'électrons) et des facteurs influençant la double couche électrique. Lors de la formation, LES Ies sont éloignées de l'équilibre et constituent donc une approximation proche, mais pas une réalisation parfaite, d'une interface idéalement polarisable. Néanmoins, le formalisme de la thermodynamique d'équilibre, par exemple, l'équation de Nernst, est universellement appliqué pour interpréter les processus électrochimiques AUX itérations. Dans cette étude, la spectroscopie d'impédance électrochimique (EIS), la voltamétrie cyclique et en courant alternatif ont été appliquées à des processus électrochimiques de sonde à DES instants formés entre des solutions électrolytiques aqueuses et α,α,α-trifluorotoluène. Une contribution significative des courants faradiques est observée sur toute la fenêtre de potentiel polarisable et la solution d'électrolyte n'est pas une résistance idéale (en particulier aux fréquences de champ électrique élevées). La double couche électrique à l'interface est influencée par la nature des ions adsorbés. Il a été démontré que les petits ions inorganiques, tels que les anions sulfate et les cations aluminium, absorbent à l'interface, l'acide méthanesulfonique absorbant fortement. La nature des ions adsorbés à l'interface déplace le potentiel de charge nulle (PZC) AUX itérations, que nous proposons à son tour influence la cinétique du transfert d'ions.

La interpretación de los datos electroquímicos generados en la interfaz entre dos soluciones electrolíticas inmiscibles (ITIES), y la realización de las ITIES para aplicaciones tecnológicas, requiere un conocimiento exhaustivo del origen de las corrientes observadas (es decir, corrientes de transferencia capacitivas, iónicas o electrónicas) y los factores que influyen en la doble capa eléctrica. Tras la formación, la ITIES está lejos del equilibrio y, por lo tanto, es una aproximación cercana, pero no una realización perfecta, de una interfaz idealmente polarizable. Sin embargo, el formalismo de la termodinámica de equilibrio, por ejemplo, la ecuación de Nernst, se aplica universalmente para interpretar los procesos electroquímicos en las IDADES. En este estudio, se aplicaron espectroscopía de impedancia electroquímica (EIS), voltametría cíclica y de CA para sondear procesos electroquímicos en una unidad formada entre soluciones acuosas y de electrolitos de α,α, α-trifluorotolueno. Se observa una contribución significativa de las corrientes faradaicas en toda la ventana de potencial polarizable y la solución de electrolito no es una resistencia ideal (especialmente a altas frecuencias de campo eléctrico). La doble capa eléctrica en la interfaz está influenciada por la naturaleza de los iones adsorbidos. Se muestra que los iones inorgánicos pequeños, como los aniones sulfato y los cationes de aluminio, se absorben en la interfaz, y el ácido metanosulfónico se absorbe fuertemente. La naturaleza de los iones adsorbidos en la interfaz cambia el potencial de carga cero (PZC) en las IDADES, lo que proponemos a su vez influye en la cinética de la transferencia de iones.

Interpretation of electrochemical data generated at the interface between two immiscible electrolyte solutions (ITIES), and realisation of the ITIES for technological applications, requires comprehensive knowledge of the origin of the observed currents (i.e., capacitive, ion or electron transfer currents) and the factors influencing the electrical double layer. Upon formation, the ITIES is away from equilibrium and therefore is a close approximation, but not a perfect realisation, of an ideally polarisable interface. Nevertheless, the formalism of equilibrium thermodynamics, e.g., the Nernst equation, are universally applied to interpret electrochemical processes at the ITIES. In this study, electrochemical impedance spectroscopy (EIS), cyclic and AC voltammetry were applied to probe electrochemical processes at an ITIES formed between aqueous and α,α,α-trifluorotoluene electrolyte solutions. A significant contribution from faradaic currents is observed across the whole polarisable potential window and the electrolyte solution is not an ideal resistor (especially at high electric field frequencies). The electrical double-layer at the interface is influenced by the nature of the ions adsorbed. Small inorganic ions, such as sulfate anions and aluminium cations, are shown to absorb at the interface, with methanesulfonic acid absorbing strongly. The nature of ions adsorbed at the interface shifts the potential of zero charge (PZC) at the ITIES, which we propose in turn influences the kinetics of ion transfer.

يتطلب تفسير البيانات الكهروكيميائية المتولدة عند الواجهة بين محلولين إلكتروليتين غير قابلين للامتزاج (ITIES)، وتحقيق ITIES للتطبيقات التكنولوجية، معرفة شاملة بأصل التيارات المرصودة (أي التيارات السعوية أو الأيونية أو الإلكترونية) والعوامل التي تؤثر على الطبقة الكهربائية المزدوجة. عند تكوينها، تكون بعيدة عن التوازن، وبالتالي فهي تقريب وثيق، ولكن ليس إدراكًا مثاليًا، لواجهة قابلة للاستقطاب بشكل مثالي. ومع ذلك، فإن شكلية الديناميكا الحرارية للتوازن، على سبيل المثال، معادلة نيرنست، يتم تطبيقها عالميًا لتفسير العمليات الكهروكيميائية في الاتحادات. في هذه الدراسة، تم تطبيق مطيافية المعاوقة الكهروكيميائية (EIS)، وقياس الجهد الحلقي و AC لفحص العمليات الكهروكيميائية عند تكوينها بين محاليل الإلكتروليت المائية و α،α،α - trifluorotoluene. لوحظت مساهمة كبيرة من التيارات الفرادية عبر نافذة الجهد المستقطبة بأكملها ومحلول الإلكتروليت ليس مقاومًا مثاليًا (خاصة عند ترددات المجال الكهربائي العالية). تتأثر الطبقة الكهربائية المزدوجة في الواجهة بطبيعة الأيونات الممتزة. تظهر الأيونات غير العضوية الصغيرة، مثل أيونات الكبريتات وكاتيونات الألومنيوم، أنها تمتص عند السطح البيني، مع امتصاص حمض الميثان سلفونيك بقوة. تعمل طبيعة الأيونات الممتزة في الواجهة على تحويل إمكانات الشحنة الصفرية (PZC) في ITIES، والتي نقترح بدورها تؤثر على حركية نقل الأيونات.

Country
Ireland
Keywords

Surface Interfaces, Dielectric spectroscopy, Cyclic voltammetry, Electrode, Ionic Liquids, Organic chemistry, Aqueous Two-Phase Systems in Separation Science, Analytical Chemistry (journal), interface between two immiscible electrolyte solutions, Electrolyte, Electrochemistry, Aqueous solution, ITIES, liquid-liquid interface, liquid|liquid interface, electro-adsorption, Physics, Chemical Engineering, Atomic and Molecular Physics, and Optics, Chemistry, Electrochemical Detection of Heavy Metal Ions, Aqueous Two-Phase Systems, Physical chemistry, Physical Sciences, Thermodynamics, Inorganic chemistry, Quantum Coherence in Photosynthesis and Aqueous Systems, Chemical physics, Filtration and Separation, Ion, FOS: Chemical engineering, potential of zero charge (PZC), interface between two immiscible electrolyte solutions (ITIES), Heavy Metal Ions, Point of zero charge, Physics and Astronomy, electrical double layer, Voltammetry, Ion Effects, Nernst equation, potential of zero charge

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 44
    download downloads 98
  • 44
    views
    98
    downloads
    Data sourceViewsDownloads
    ZENODO4498
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
20
Top 10%
Average
Top 10%
44
98
Green
bronze