Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigation of soil thermal saturation and recovery under intermittent and continuous operation of EATHE

Authors: Poonam Verma; Ankit Kumar Surana; Sanjay Mathur; Ghanshyam Das Agrawal; Anuj Mathur; Jyotirmay Mathur;

Investigation of soil thermal saturation and recovery under intermittent and continuous operation of EATHE

Abstract

Abstract One of the problems in operating earth air tunnel heat exchangers (EATHE) is the collection/rejection of heat from buried pipe to nearby sub-soil which alters the soil temperature, and, in turn, adversely affects the performance of EATHE system with time. This problem is more pronounced with the soil having poor thermal conductivity and little variation in moisture content. Extent thermal saturation and time required for self-recovery of soil around the buried pipe has great importance to ensure efficiency and usefulness of an EATHE system. However, there are hardly any studies on the self-recovery of soil during intermittent operation mode. The objective of present study is to compare the thermal saturation and self-recovery ability of soil in continuous and intermittent operation modes. The numerical results have been validated experimentally through a full scale setup. It is found that the soil temperature can be recovered in both intermittent and continuous operation modes by employing natural heat conduction (heat taken away from the pipe's immediate vicinity) and convection (heat taken away by purge air passing through EATHE in night hours when ambient is lower than soil) respectively.

Powered by OpenAIRE graph
Found an issue? Give us feedback