
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Exergy analysis applied to performance of buildings in Europe

Abstract Energy performance of buildings generally assesses the energy consumption of buildings such as heating, domestic heat water, ventilation systems, etc. However, this approach is based on the first law of thermodynamics and considers only the quantity of energy used without considering its ‘quality’ and leads to a lack of information about the energy conversion processes. This is particularly true in the new low-energy buildings where sometimes high temperatures sources are used to meet low-temperature needs. The exergy analysis of a system, based on first and second thermodynamic laws, can be used to overcome this. In this work, it is proposed to compare the energy and the exergy consumption and the related CO2 emissions of several kinds of buildings to determine the best systems in terms of energy and exergy needs. The energy demand calculations are performed using the official software available in Belgium and some assumptions are implemented to consider the exergy approach. As exergy calculations require a reference state, some different climatic conditions are also investigated. Finally, some conclusions are discussed to rank the sources of energy and their related exergy losses.
- Université de Liège (ULiège) Belgium
- University of Liège Belgium
- Université de Liège (ULiège) Belgium
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).30 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
