Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental study on the heat recovery characteristic of a heat exchanger based on a flat micro-heat pipe array for the ventilation of residential buildings

Authors: Lin Liang; Tingting Zhu; Y.M. Kang; Yanhua Diao; Zeyu Wang; Yaohua Zhao;

Experimental study on the heat recovery characteristic of a heat exchanger based on a flat micro-heat pipe array for the ventilation of residential buildings

Abstract

Abstract Heat recovery significantly and positively affects energy conservation and prevents global warming. A small flat heat pipe heat recovery device (SFHPHRD), which applies flat micro-heat pipe array (FMHPA) with welded, serrated and staggered fin on its surface, is designed as a core heat transfer component in the heat recovery systems of residential buildings. The air volume flow ratio between fresh air and exhaust air was maintained at a value of 1 in the experiment. Under simulated winter and summer conditions, the performance of SFHPHRD under varying indoor and outdoor air temperatures, air volume flows and rows of FMHPAs were separately investigated. Heat recovery efficiency, coefficient of performance (COP) and device volume were also analyzed. Important influencing factors, which affect the performance of SFHPHRD, were considered. Experimental data were combined actual data from buildings to analyze the energy conservation capacity and application of SFHPHRD. Results showed that efficient heat transfer of FMHPA with welded, serrated, and staggered fin and the independent components enables SFHPHRD to possess high heat recovery efficiency, high reliability, low resistance, and suitable volume. The maximum high heat recovery efficiency and COP can reach 78% and 91.9 under experimental conditions, respectively.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%