Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hong Kong Polytechni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Unsupervised data analytics in mining big building operational data for energy efficiency enhancement: A review

Authors: Fan, C; Xiao, F; Li, Z; Wang, J;

Unsupervised data analytics in mining big building operational data for energy efficiency enhancement: A review

Abstract

Abstract Building operations account for the largest proportion of energy use throughout the building life cycle. The energy saving potential is considerable taking into account the existence of a wide variety of building operation deficiencies. The advancement in information technologies has made modern buildings to be not only energy-intensive, but also information-intensive. Massive amounts of building operational data, which are in essence the reflection of actual building operating conditions, are available for knowledge discovery. It is very promising to extract potentially useful insights from big building operational data, based on which actionable measures for energy efficiency enhancement are devised. Data mining is an advanced technology for analyzing big data. It consists of two main types of data analytics, i.e., supervised and unsupervised analytics. Despite of the power of supervised analytics in predictive modeling, unsupervised analytics are more practical and promising in discovering novel knowledge given limited prior knowledge. This paper provides a comprehensive review on the current utilization of unsupervised data analytics in mining massive building operational data. The commonly used unsupervised analytics are summarized according to their knowledge representations and applications. The challenges and opportunities are elaborated as guidance for future research in this multi-disciplinary field.

Related Organizations
Keywords

Big data, Building energy management, Unsupervised data mining, Building energy efficiency, Building operational performance

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    181
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
181
Top 1%
Top 1%
Top 1%
Green