Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy and Buildingsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy and Buildings
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental comparison of green facades with outdoor test cells during a hot humid season

Authors: Georgios Kokogiannakis; Jo Darkwa; Sofia Badeka; Yilin Li;

Experimental comparison of green facades with outdoor test cells during a hot humid season

Abstract

We used outdoor test cells during a hot humid period to analyse the surface temperatures behind the following four types of green walls: a felt layer wall; a planter boxes wall; a direct climbing plants wall, and; an indirect climbing plants wall. We compared these temperatures with temperatures of a bare wall and we found that all four types of green facades were able to maintain lower temperatures than the bare wall, and that the felt layer and planter boxes wall had lower temperatures than the other walls for the majority of the study period. In particular, the daily average and peak surface temperatures behind the felt layer wall were by 1.9°C–4.8°C and by 7.1°C–13.4°C respectively lower than the bare wall. We undertook a significance analysis and produced Pearson coefficients to better understand the relationship between average daily weather conditions and the surface temperatures on all five test cells. We noted that the average daily solar radiation flux did not affect the surface temperatures behind the planter boxes and felt layer walls, but the daily average ambient air temperature was significantly correlated with the average and peak surface temperatures behind all four green facades. Finally, we concluded that the cooling potential of the felt layer and the planter boxes walls increases with higher amounts of solar radiation and higher ambient temperatures. In addition, from the analysis of the diurnal temperature variations and the time series trends we illustrated that the temperatures behind the felt layer and planter boxes walls fluctuated less than the other walls, which lead to a slower rate of surface temperature reductions during a cooler day than the other wall types of the study.

Countries
United Kingdom, Australia, Australia
Keywords

Engineering, Science and Technology Studies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%
Green
hybrid