Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Form-stable phase change material based on fatty acid/wood flour composite and PVC used for thermal energy storage

Authors: Yu Yuxiang; Yang Keyan; Shi Q. Sheldon; Zhou YuCheng; Cai Liping; Chang Jian-min; Xing JingChen;

Form-stable phase change material based on fatty acid/wood flour composite and PVC used for thermal energy storage

Abstract

Abstract This work focused on a novel form-stable phase change material (FSPCM) for building energy saving. Capric acid (CA) and palmitic acid (PA) were selected to prepare binary eutectic. The CA-PA/wood flour (WF) composites with different mass ratios were prepared by the vacuum impregnation method. After the shape-stabilized properties were investigated, the results indicated that there were the good encapsulate capacity of WF to CA-PA eutectic and the slight effect of WF on the crystallization. Phase change wood plastic composites (WPCs) using CA-PA /WF composites as the latent heat storage medium and PVC as the matrix were prepared. The relations between mass ratios of CA-PA /WF composites and mechanical properties of WPCs were discussed. The results revealed that the WPCs with appropriate mass fraction of CA-PA eutectic had desired mechanical properties for practical applications. The prepared composites were examined by the scanning electron microscope (SEM), differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG) and accelerated thermal cycling test. SEM images showed that the WPC prepared by the CA-PA /WF composite with the mass ratio of 0.4:1(WPC0.4) was more compact and uniform, but as the amount of CA-PA eutectic increased, more gaps and cracks appeared. DSC results showed that the WPC0.8 melted at 22.03 °C with a latent heat of 28.16 J/g and froze at 20.06 °C with a latent heat of 29.77 J/g, which was more applicable to the thermal energy storage systems for buildings. FTIR results demonstrated that there was no chemical reaction between CA-PA eutectic and components in WPC. The prepared FSPCM exhibited excellent thermal stability for the building materials from the TG analysis. Furthermore, the results of accelerated thermal cycling test showed that the composite had a good thermal reliability after 500 thermal cycles.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%
bronze