Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Universitat Politècn...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Recolector de Ciencia Abierta, RECOLECTA
Article . 2021 . Peer-reviewed
License: CC BY NC ND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A comprehensive simulation tool for adsorption-based solar-cooled buildings – Control strategy based on variable cycle duration

Authors: Papakokkinos, Giorgos; Castro González, Jesús; Capdevila Paramio, Roser; Damble, Rashmin;

A comprehensive simulation tool for adsorption-based solar-cooled buildings – Control strategy based on variable cycle duration

Abstract

Adsorption cooling systems (ACS) may contribute towards a sustainable way of satisfying the increasing cooling demand, as they utilize solar thermal energy and employ non-ozone-depleting substances. Apart from the intrinsic ACS performance, the successfulness of its operation depends on its integration within the entire thermal system (solar collectors, thermal storage and building), which is not straight-forward due to thermal inertia effects and its inherent cyclic operation. Numerical simulations can contribute in understanding the system behavior, its adequate dimensioning and the implementation of optimized control strategies. A computational model was developed, capable of performing conjugate, dynamic simulations of the entire thermal system. The influence of the control criteria is investigated and quantified through three simulation phases, conducted for various solar collectors areas and storage volumes. Higher solar fraction is achieved for lower auxiliary heater activation temperature and lower temperature difference activation of the solar pump. Subsequently, simulations with variable cycle duration were performed, using optimized cycle duration according to the instantaneous operating temperatures. This approach reduces significantly the auxiliary consumption or satifies the demand with less solar collectors. The potential CO2 emissions avoidance is calculated between 28.1-90.7% with respect to four scenarios of electricity-driven systems of different performance and CO2 emission intensity. Peer Reviewed

Country
Spain
Keywords

Adsorption cooling, Àrees temàtiques de la UPC::Física::Termodinàmica, Solar thermal energy, Solar cooling, Refrigeració, Energia termica solar, :Física::Termodinàmica [Àrees temàtiques de la UPC], Aire condicionat, Building simulation, Air conditioning, Solar energy, Adsorció, Adsorption, Cooling

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 62
    download downloads 74
  • 62
    views
    74
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
12
Top 10%
Average
Top 10%
62
74
Green