Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The performance analysis of a double-skin ventilated window integrated with CdTe cells in typical climate regions

Authors: Jun Wang; Jie Ji; Muin Uddin; Chuyao Wang; Bendong Yu;

The performance analysis of a double-skin ventilated window integrated with CdTe cells in typical climate regions

Abstract

Abstract In this work, a double-skin ventilated window integrated with CdTe cells was proposed, which can adapt to various climate conditions by switching the work modes. Firstly, the experiment of testing the thermal and electrical behaviors of this window was conducted on an actual building. Secondly, the simulation model coupling this window with the building was developed and validated against the experimental data. Thirdly, the annual performance of the proposed window (including heat, daylight, PV output) in typical climate regions of high, middle, low latitudes was predicted. Finally, the impact of change in parameters on the energy performance was analyzed. The experimental results showed that the proposed window could provide the hot air to the room under winter mode, and effectively reduced solar heat gain under summer mode. The PV efficiency was greatly affected by solar incident angle. The simulated results indicated that the electricity loss due to the extinction and reflection of glass was about 25%-30%. For Hefei and Harbin, the most energy-efficient orientation of the proposed window was south, and it was west for Haikou. As the PV coverage ratio increased, the net energy consumption decreased firstly and then increased. The optimal values for Harbin, Hefei, and Haikou were 50%, 60%, and 70%, respectively. Increasing the window-wall ratio and the cavity depth was always beneficial to reduce NEC.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 1%