Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

First and second level of exergy destruction splitting in advanced exergy analysis for an existing boiler

Authors: Mirko M. Stojiljković; Mića Vukić; Goran Vučković;

First and second level of exergy destruction splitting in advanced exergy analysis for an existing boiler

Abstract

Abstract When complex energy systems are analyzed and when a large number of their components is observed, the destruction of exergy related to a single component is dependent on its own properties, but also on the characteristics of other components. The advanced exergy analysis is useful for providing supplementary information on the interaction between the components. It also exposes the real improvement potential related to each component of a system, but also of a system as a whole. In this paper, an existing complex industrial plant with 33 components and 70 streams is analyzed using the first and second level of exergy destruction splitting for the boiler, as a main plant component from the aspect of destroying the useful work. From the total unavoidable exergy destruction 97.28% comes from the internal irreversibility, 2.72% comes from the irreversibilities of other components, while 95.26% of the unavoidable exergy destruction (186.49 kW) comes from the internal irreversibility, and 4.74% from the external irreversibility. The final result of the advanced exergy analysis for the steam generator is the total value of the avoidable exergy destruction as a real potential that can be avoided. It is 16.19% of the total exergy destruction of the component. That is less than the data obtained in the first decomposition level (186.49 kW) merely due to the existence of mexogenous exergy destruction.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Top 10%
Top 10%