
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Co-production of hydrogen and carbon nanotubes from catalytic pyrolysis of waste plastics on Ni-Fe bimetallic catalyst

To explore the mechanism of the influence of Ni-Fe bimetallic catalyst for the producing high-value carbon nanotubes (CNTs) with clean hydrogen from waste plastic pyrolysis, the pyrolysis-catalysis of plastics were performed using a two stage fixed bed reaction system with Ni and Fe loading at variant molar ratios. The catalysts and produced carbon were analysed with various characterization method, including temperature-programed reduction/oxidation, X-ray diffraction, scanning electron microscopy or/and Raman spectroscopy. Both the H2 concentration and H2 yield reached maximum values of 73.93 vol.% and 84.72 mg g−1 plastic, respectively, as the ratio of Ni:Fe at 1:3. The amount and quality of CNTs were greatly influenced by the catalyst composition, and Ni and Fe display different roles to the overall reactivity of Ni-Fe catalyst for the pyrolysis-catalysis of waste plastics. Catalyst with more Fe loading produced more hydrogen and deposited carbon, due to higher cracking ability and the relatively lower interaction between active sites and support. The presence of Ni in Ni-Fe bimetallic catalyst enhanced the thermal stability and graphitization degree of produced carbons. The thermal quality of filamentous carbons might be associated with carbon defects.
- University of Leeds United Kingdom
- Huazhong University of Science and Technology China (People's Republic of)
- White Rose Consortium: University of Leeds; University of Sheffield; University of York United Kingdom
- University of Hull United Kingdom
- State Key Laboratory of Coal Combustion China (People's Republic of)
Waste plastics, 660, Carbon nanotubes, Ni-Fe bimetallic catalyst, Hydrogen
Waste plastics, 660, Carbon nanotubes, Ni-Fe bimetallic catalyst, Hydrogen
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).228 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
