Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Parametric modeling: A simple and versatile route to solar irradiance

Authors: Nicolina Pop; Marius Paulescu; Delia Calinoiu; Delia Calinoiu; Andreea Sabadus; Remus Boata; Robert Blaga; +2 Authors

Parametric modeling: A simple and versatile route to solar irradiance

Abstract

Abstract A clear-sky solar irradiance model is certainly a basic tool in the estimation of solar resources. With all the abundance of such models, there is plenty of room for searching a clear-sky solar irradiance model with general applicability, i.e. to be able to provide high-accurate estimates in most places around the world. This paper reports an upgraded version (further referred to as SIMv.2) of our parametric clear-sky solar irradiance model SIMv.1, aiming to improve the accuracy of estimates in arid environment. The new elements of SIMv.2, such as new equations for aerosol absorption and downward fraction, have been introduced targeting a better capture of the peculiarities of the solar radiation extinction by aerosols. Overall, the results of testing SIMv.2 at twelve stations located in regions with temperate, arid and tropical climate show that SIMv.2 performs much better than SIMv.1, an improvement in nRMSE of 37.1% for global solar irradiance and of 24.7% for the diffuse component being noticed. The comparison with other fourteen clear-sky solar irradiance models at five stations located in arid climate places SIMv.2 in the class of the best performing models. The limitation of the SIMv.2 performance in extreme weather conditions is discussed in two cases.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%
bronze