Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hydrogen production, storage, transportation and key challenges with applications: A review

Authors: Abdalla M. Abdalla; Abdalla M. Abdalla; Shahzad Hossain; Shahzad Hossain; Abul Kalam Azad; Mohamed M. Khairat Dawood; Ozzan B. Nisfindy; +1 Authors

Hydrogen production, storage, transportation and key challenges with applications: A review

Abstract

Abstract The energy demand worldwide has increased significantly with the increase in population. This is because energy is needed in almost every activity. For example, in industry, working, cleaning, transportation and commuting from one place to another. The majority of energy being used is obtained from fossil fuels, which are not renewable resources and require a longer time to recharge or return to its original capacity. Energy from fossil fuels is cheaper but it faces some challenges compared to renewable energy resources. Thus, one of the most potential candidates to fulfill the energy requirements are renewable resources and the most environmentally friendly fuel is hydrogen (H2). Hydrogen exists mostly in plant materials and is not readily available in nature. It is necessary to produce hydrogen from available feedstock (water), which covers 70% of the earth. Moreover, hydrogen under standard pressure and temperature has an important merit; it can be obtained from renewable resources. Although, currently it is produced from fossil fuels. Hydrogen as a fuel is nonmetallic, non-toxic and can generate higher energy than gasoline on a mass basis. However, to employ hydrogen as a fuel, extensive research is essential to investigate and design on-board applications. Also, the cost of producing hydrogen (renewable) is expensive compared to gasoline (fossil). Thus, the production of H2 from renewable resources and from fossil fuels requires tremendous effort. One of these efforts is to generate H2 from biofuels as it is considered a promising technique that can help manage hydrogen from food waste. In addition, hydrogen storage materials are still lacking in both volumetric and gravimetric density. In this review, the key challenges that hydrogen industry are confronting are introduced and highlighted to facilitate the use of hydrogen as an alternative energy.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1K
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.01%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.01%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1K
Top 0.01%
Top 0.1%
Top 0.01%