
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Performance analysis of a biomass powered micro-cogeneration system based on gasification and syngas conversion in a reciprocating engine

handle: 10447/608015 , 11367/70170 , 11580/69530
Abstract The present paper describes an experimental characterisation of a biomass powered micro-cogeneration system based on the coupling between a gasifier and an internal combustion engine. The ECO 20 unit is sized to deliver a maximum electrical and thermal power of 20 kWe and 40 kWth, respectively. In order to highlight possible inefficiencies along the biomass-to-energy conversion chain, the global energy balance of the system under real working conditions is derived. Ultimate and proximate analyses of the processed biomass are performed, accompanied by temperature and mass flow rate measurements and gas chromatograph characterization of collected samples of the produced syngas. The greatest inefficiency is found in the gasification section with a value of the cold gas efficiency in the range of 57–60%. The low quality of the syngas (lower heating value equal to 3731 kJ/Nm3) affects the engine combustion efficiency, hence its electrical efficiency that does not exceed 22.5%. The global electrical efficiency of the plant is equal to about 13.5%. As a further analysis, waste heat recovery is considered under different conditions by decreasing the temperature of the water flowing in the secondary circuit from 68.35 °C to 20.50 °C for the use of the provided thermal energy. This determines an increase of the thermal efficiency of the engine from 11.3% to 56.2%, while the global thermal efficiency increases from 6.46% to 33.72%. A feature of the ECO 20 system is the cooling of the syngas delivered to the engine by its same cooling water, for a considerable advantage on volumetric efficiency with respect to other analogous systems, also in the cases the thermal power is not utilised.
Micro combined heat and power, Biomass, Energy balance, Imbert downdraft, Biomass; Energy balance; Gasification; Imbert downdraft; Micro combined heat and power; Renewable Energy, Sustainability and the Environment; Nuclear Energy and Engineering; Fuel Technology; Energy Engineering and Power Technology, Gasification
Micro combined heat and power, Biomass, Energy balance, Imbert downdraft, Biomass; Energy balance; Gasification; Imbert downdraft; Micro combined heat and power; Renewable Energy, Sustainability and the Environment; Nuclear Energy and Engineering; Fuel Technology; Energy Engineering and Power Technology, Gasification
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).49 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
