
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Proposal and thermoeconomic analysis of a novel combined cooling and power system using carbon dioxide as the working fluid

Abstract A novel combined cooling and power (CCP) system integrating a supercritical carbon dioxide recompression Brayton cycle with an ejector transcritical carbon dioxide refrigeration cycle (E-TCRC) is proposed to realize the effective utilization of nuclear power. In the proposed system, a portion of CO2 exiting the pre-cooler is used to drive the E-TCRC for generating cooling and recovering partial waste heat of sCO2 turbine exhaust. The mathematical model and economic model of the proposed system are established under steady-state conditions. Besides, the exergy efficiency and total product unit cost of the system are selected as the main criteria to evaluate system performance. Parametric analysis is applied to study the effects of four key parameters on the system performance. The CCP system, conventional separated cooling and power (C-SCP) system and ejector separated cooling and power (E-SCP) system are optimized by single-objective and multi-objective optimization. Single-objective optimization reveals that the exergy efficiencies of the CCP system are up to 1.08%pt (percentage point), 0.80%pt and 0.47%pt higher than those of the C-SCP system at the corresponding evaporation temperatures (−20 °C, −10 °C and 0 °C). Besides, the CCP system performs better than the E-SCP system at lower turbine inlet pressures. The multi-objective optimization shows that when the evaporation temperature increases from −20 °C to 0 °C, the total product unit cost of the CCP system decreases from 10.087 $/GJ to 9.668 $/GJ, and exergy efficiency increases from 59.25% to 60.97%.
- Chongqing University China (People's Republic of)
- Chongqing University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).26 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
