Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Local-pattern-aware forecast of regional wind power: Adaptive partition and long-short-term matching

Authors: Xuemin Zhang; Feng Liu; Shengwei Mei; Chenyu Liu;

Local-pattern-aware forecast of regional wind power: Adaptive partition and long-short-term matching

Abstract

Abstract Importance for the accurate forecast of wind region with multiple wind farms is gradually emerging. As influenced by the geographical features of the wind region, the power output from each wind farm is closely correlated to the local-patterns of its covered weather. However, modeling the highly time-varying nature of the local-patterns’ spatial distribution remains the key challenge to regional wind power forecast. For this purpose, a sub-region is proposed to represent the spatial scale of wind farms covered by the same local-pattern. All wind farms in the wind region are divided into multiple sub-regions. This classification is defined as the partition which represents a typical state of the wind region. To deal with the time-varying nature, partitions are considered on the adaptive process. In this paper, a regional wind power forecasting method based on adaptive partition and long-short-term matching is proposed. First, a refined partition set of wind region is determined by the Regional Hierarchical Clustering algorithm. Second, to identify the current states of the wind region, the partition with minimum forecasting error is chosen as Optimal Partition. Third, the long-short-term matching strategy is proposed to find the adaptive partition among the refined partition set with the indication of recent and historical Optimal Partitions. Eventually, for each time horizon, the forecasted power of each sub-regions in the adaptive partition is aggregated to achieve the final regional wind power forecasting results. The superior performance and robustness of the proposed methods are validated with actual wind generation data from a wind region which contains nine wind farms in China. The ability to capture wind farm local-pattern of the proposed method is also approved.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Top 10%