Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Economicsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Economics
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Efficient climate policies under technology and climate uncertainty

Authors: Kai Lessmann; Ottmar Edenhofer; Ottmar Edenhofer; Hermann Held; Elmar Kriegler;

Efficient climate policies under technology and climate uncertainty

Abstract

This article explores efficient climate policies in terms of investment streams into fossil and renewable energy technologies. The investment decisions maximise social welfare while observing a probabilistic guardrail for global mean temperature rise under uncertain technology and climate parameters. Such a guardrail constitutes a chance constraint, and the resulting optimisation problem is an instance of chance constrained programming, not stochastic programming as often employed. Our analysis of a model of economic growth and endogenous technological change, MIND, suggests that stringent mitigation strategies cannot guarantee a very high probability of limiting warming to 2 °C since preindustrial time under current uncertainty about climate sensitivity and climate response time scale. Achieving the 2 °C temperature target with a probability P* of 75% requires drastic carbon dioxide emission cuts. This holds true even though we have assumed an aggressive mitigation policy on other greenhouse gases from, e.g., the agricultural sector. The emission cuts are deeper than estimated from a deterministic calculation with climate sensitivity fixed at the P* quantile of its marginal probability distribution (3.6 °C). We show that earlier and cumulatively larger investments into the renewable sector are triggered by including uncertainty in the technology and climate response time scale parameters. This comes at an additional GWP loss of 0.3%, resulting in a total loss of 0.8% GWP for observing the chance constraint. We obtained those results with a new numerical scheme to implement constrained welfare optimisation under uncertainty as a chance constrained programming problem in standard optimisation software such as GAMS. The scheme is able to incorporate multivariate non-factorial probability measures such as given by the joint distribution of climate sensitivity and response time. We demonstrate the scheme for the case of a four-dimensional parameter space capturing uncertainty about climate and technology.

Country
Germany
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Top 10%