Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimal operation of an integrated energy system including fossil fuel power generation, CO2 capture and wind

Authors: Louis J. Durlofsky; Charles A. Kang; Adam R. Brandt;

Optimal operation of an integrated energy system including fossil fuel power generation, CO2 capture and wind

Abstract

Abstract This study considers the optimization of operations for an integrated fossil-renewable energy system with CO2 capture. The system treated consists of a coal-fired power station, a temperature-swing absorption CO2 capture facility powered by a natural gas combustion turbine, and wind generation. System components are represented in a modular fashion using energy and mass balances. Optimization is applied to determine hourly system dispatch to maximize operating profit given energy prices and wind generation data. A CO2 emission constraint, modeled after a California law, is enforced. Idealized and realistic scenarios are considered, along with several different system specifications. For a year of operation, simulated using available wind and energy price data, operating profit for optimized operation is shown to be approximately 20% greater than profit using a heuristic procedure. The benefit from optimization is positively correlated with electricity price variability and mean wind generation. The impact of different component specifications and different CO2 absorption solvents on the optimal operation of the energy system is also assessed. In total, this study demonstrates that the effective operating cost of an integrated energy system operating under a CO2 emission constraint can be substantially reduced via optimal flexible operation.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    73
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
73
Top 10%
Top 10%
Top 10%