Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Carbon dioxide fixation and biomass production from combustion flue gas using energy microalgae

Authors: Bingtao Zhao; Yaxin Su; Guomin Cui; Yixin Zhang;

Carbon dioxide fixation and biomass production from combustion flue gas using energy microalgae

Abstract

Abstract Algae-based bioenergy has been regarded as the next generation of renewable energy. To fix CO2 from flue gas and harvest algal biomass for energy conversion, three energy microalgae, Chlorella sp., Isochrysis sp. and Amphidinium carterae, were investigated in 1-L bubble column photobioreactors with an aeration of 15% CO2 at the flue-gas level. According to the potential on CO2 fixation and biomass production, Chlorella sp. was selected as the dominant species due to its superiority to the other species, with a specific growth rate of 0.328 d−1, a biomass production rate of 0.192 gL−1 d−1 and a CO2 fixation rate of 0.353 gL−1 d−1. Furthermore, Chlorella sp. was cultured under varied physicochemical parameters, including CO2 concentrations, aeration rates and toxic compounds (SO2, NO and Hg2+) to assess its performances. The maximum specific growth rate, biomass production rate and CO2 fixation rate were found to be 0.372 d−1, 0.268 gL−1 d−1 and 0.492 gL−1 d−1 at a CO2 concentration of 10%; 0.375 d−1, 0.274 gL−1 d−1 and 0.503 gL−1 d−1 at an aeration rate of 0.1 vvm; and 0.328 d−1, 0.192 gL−1 d−1 and 0.353 gL−1 d−1 in the absence of toxic compounds, respectively. The results provide a basis for microalgal-based CO2 emission reduction and bioenergy utilization in pilot-scale applications.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    96
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
96
Top 1%
Top 10%
Top 10%