
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Energy efficiency improvement in oil refineries through flare gas recovery technique to meet the emission trading targets

Abstract Flare gas recovery is one of the most attractive methods to improve energy efficiency in oil refineries to decrease greenhouse gas emissions. The recovered gas is used to feed refinery processes, granting advantages in terms of fuel economy and flare stress. This paper presents the results obtained by a feasibility study of a flare gas recovery system in a real refinery; the work focused on: i) the choice and the design of the flare gas recovery system; ii) the gas treatment and reuse; iii) the economic feasibility, and the payback period. An experimental campaign has been performed to evaluate both the composition and the flow rate of the flare gas. Results showed that the flare gas had a strongly variable flow rate and composition due to the different gas species processed in refinery. A methodology for the system selection is presented: a 400 kg/h liquid ring compression device is chosen; its basic design is described as well as the chemical treatments of inert gases and hydrogen sulphide (H2S). The yearly energy recovery was estimated to be 2900 TOE, corresponding to 6600 tons of CDE (Carbon Dioxide Equivalent). Finally, an economic evaluation was carried out, showing a payback period of about 2.5 years.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).46 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
