
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Benchmarking of a micro gas turbine model integrated with post-combustion CO 2 capture

handle: 10034/620439
The deployment of post-combustion CO2 capture on large-scale gas-fired power plants is\ud currently progressing, hence the integration of the power and capture plants requires a\ud good understanding of operational requirements and limitations to support this effort. This\ud article aims to assist research in this area, by studying a micro gas turbine (MGT) integrated\ud with an amine-based post-combustion CO2 capture unit. Both processes were simulated\ud using two different software tools – IPSEpro and Aspen Hysys, and validated against\ud experimental tests. The two MGT models were benchmarked at the nominal condition, and\ud then extended to part-loads (50 and 80 kWe), prior to their integration with the capture\ud plant at flue gas CO2 concentrations between 5 and 10 mol%. Further, the performance of\ud the MGT and capture plant when gas turbine exhaust gases were recirculated was assessed.\ud Exhaust gas recirculation increases the CO2 concentration, and reduces the exhaust gas\ud flowrate and specific reboiler duty. The benchmarking of the two models revealed that the\ud IPSEpro model can be easily adapted to new MGT cycle modifications since turbine\ud temperatures and rotational speeds respond to reaching temperature limits; whilst a\ud detailed rate-based approach for the capture plant in Hysys resulted in closely aligned\ud simulation results with experimental data.\ud
- University of Stavanger Norway
- University of Hull United Kingdom
- International Research Institute of Stavanger Norway
- University of Chester United Kingdom
- University of Chester United Kingdom
690, 330, Micro gas turbine, Exhaust gas recirculation, Specialist Research - Other, 620, Post-combustion
690, 330, Micro gas turbine, Exhaust gas recirculation, Specialist Research - Other, 620, Post-combustion
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
