
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Analysis of different combined cycles and working fluids for LNG exergy recovery during regasification

handle: 11583/2723807
Abstract It has been estimated that the world's consumption of Liquefied Natural Gas (LNG) will increase significantly over the next 20 years, thus making exergy recovery from the regasification process a fundamental issue. When LNG is regasified in order to distribute the fuel through a pipeline network, a large amount of exergy is released. Three combined cycle schemes for energy generation have been analysed in this paper: the first one is a direct expansion cycle, combined with a Rankine cycle, the second one presents a double expansion with reheating and a recovery heat exchanger, and the last one shows two parallel Rankine cycles working under different turbine pressures. The performance of the three cycles has been compared, and the effects of using working fluids with different characteristics have been analysed in detail. Twelve working fluids were selected, according to their thermodynamic, ambient and safety proprieties. The working pressure and temperature that maximise the specific work have been found for each cycle and fluid.
Exergy recovery; Liquefied Natural Gas; Power generation; Rankine Cycle; Regasification; Civil and Structural Engineering; Building and Construction; Pollution; Mechanical Engineering; Industrial and Manufacturing Engineering; Electrical and Electronic Engineering
Exergy recovery; Liquefied Natural Gas; Power generation; Rankine Cycle; Regasification; Civil and Structural Engineering; Building and Construction; Pollution; Mechanical Engineering; Industrial and Manufacturing Engineering; Electrical and Electronic Engineering
