Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Southe...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy
Article . 2018
License: CC BY NC ND
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Influence of driving rain and vapour diffusion on the hygrothermal performance of a hygroscopic and permeable building envelope

Authors: Diane Bastien; Martin Winther-Gaasvig;

Influence of driving rain and vapour diffusion on the hygrothermal performance of a hygroscopic and permeable building envelope

Abstract

Abstract Most natural building materials are hygroscopic and permeable to water vapour. These two characteristics have the potential to improve the longevity and indoor air quality of buildings. However, the potential of winter condensation due to vapour diffusion and the risk of mold growth should be assessed for safeguarding the longevity of building assemblies. This study investigates the relative importance of driving rain, plaster capillarity and the presence of a vapour barrier on the moisture content of building materials and the risk of mold growth for a hygroscopic and permeable building envelope (HPBE). Hygrothermal simulations of a single-family house in Denmark mainly made of wood and clay are performed with WUFI. Results indicate that the presence of an overhang is essential to ensure the durability of a HPBE rendered with a capillary active lime-based plaster while the presence of an overhang has a negligible impact for a mineral cement-based plaster. Including a vapour barrier did not introduce significant changes on the moisture content of this wall assembly. Simulation results indicate that the type of plaster and the wind-driven rain exposure are the most critical variables affecting the hygrothermal performance of this wall assembly.

Country
Denmark
Related Organizations
Keywords

Water management techniques, Water vapour, Permeability, Diffusion, Hygroscopicity

Powered by OpenAIRE graph
Found an issue? Give us feedback