
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Kinetic study for the co-pyrolysis of lignocellulosic biomass and plastics using the distributed activation energy model

The characteristics of bio-oil produced from biomass pyrolysis can be improved by co-feeding waste materials. In this work, co-pyrolysis of lignocellulosic biomass with six different waste plastics (waste tyre (WT), polylactic acid (PLA), polystyrene (PS), polyethylene terephthalate (PET), polypropylene (PP) and high density polyethylene (HDPE)) were conducted in a thermogravimetric analyser to study thermal decomposition of the mixtures. The distributed activation energy model (DAEM) was applied to pure feedstocks at 5 and 10 °C/min heating rates to fit the kinetic parameters. The model was used to simulate the co-pyrolysis of biomass/plastic mixtures assuming additive effect of components at different weight proportions and heating rates. Profiles of the fraction of mass remaining for mixtures at 100 °C/min were reproduced with a remarkable agreement. Discrepancies between the experimental and calculated profiles were considered as a measure of the extent of interactions occurring in the co-pyrolysis. Projections of the behaviour of mixtures under flash pyrolysis conditions were performed to study important aspects of the process, such as radical interactions and optimum working temperature The authors wish to thank the Spanish MINECO and European Union FEDER funds (project ENE2015-68320-R) and the Regional Government of Aragon (DGA) for the research groups support programme (project T04_17R). Peer reviewed
Co-pyrolysis, Kinetics, Biomass, Plastics, DAEM
Co-pyrolysis, Kinetics, Biomass, Plastics, DAEM
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).95 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
