
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Experimental and modeling study of the mutual oxidation of N-pentane and nitrogen dioxide at low and high temperatures in a jet stirred reactor

handle: 1721.1/125784
Abstract The mutual oxidation of n-pentane and NO2 at 500–1000 K has been studied at equivalence ratios of 0.5 and 1.33 by using an atmospheric-pressure jet stirred reactor (JSR). N-pentane, O2, NO, NO2, CO, CO2, CH2O, C2H4, and CH3CHO are simultaneously quantified, in-situ by using an electron-impact molecular beam mass spectrometer (EI-MBMS), a micro-gas chromatograph (μ-GC), and a mid-IR dual-modulation faraday rotation spectrometer (DM-FRS). Both fuel lean and rich experiments show that, in 550–650 K, NO2 addition inhibits low temperature oxidation. With an increase of temperature to the negative temperature coefficient (NTC) region (650–750 K), NO2 addition weakens the NTC behavior. In 750–1000 K, high temperature oxidation is accelerated with NO2 addition and shifted to lower temperature. Two kinetic models, a newly developed RMG n-pentane/NOx model and Zhao's n-pentane/NOx model (Zhao et al., 2018, Submitted) were validated against experimental data. Both models were able to capture the temperature-dependent NO2 sensitization characteristics successfully. The results show that although NO2 addition in n-pentane has similar effects to NO at many conditions due to fast NO and NO2 interconversion at higher temperature, it affects low temperature oxidation somewhat differently. When NO2/NO interconversion is slow, NO2 is relatively inert while NO can strongly promote or inhibit oxidation.
- College of New Jersey United States
- Wuhan Polytechnic University China (People's Republic of)
- Wuhan University of Technology China (People's Republic of)
- Wuhan Polytechnic University China (People's Republic of)
- Massachusetts Institute of Technology United States
660
660
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).55 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
