
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Dynamic performance investigation for two types of ORC system driven by waste heat of automotive internal combustion engine

Abstract Organic Rankine cycle (ORC) system has been widely used in waste heat recovery (WHR) from exhaust gas of internal combustion engine (ICE) to improve efficiency. Due to the real road condition, the heat source of ORC system is always fluctuant and volatile for WHR in automotive internal combustion engine (A-ICE). Thus, two types of ORC system are analyzed to explore the dynamic performance in this paper based on the dynamic models programmed in Dymola. The dynamic behavior is analyzed when ICE operating condition changes and when the changed operating condition gets back to the original state after a period of time. The results show that with fluctuant heat source, the Oil storage/Organic Rankine Cycle (OS/ORC) system has a stronger resistance to the change of operating conditions as well as a better heat recovery performance, and the rate of decline of system power output is lower; but it's apt to occur low temperature corrosion. In addition, with consideration of PID control strategy, evaporation pressure drops 1.43 bar and 2.57 bar for the ORC and OS/ORC system rather than 8.69 bar and 11.54 bar, and the degree of superheat can be prevented from declining to zero, ensuring a safety operation of system.
- Tianjin University China (People's Republic of)
- Tianjin University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).37 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
