Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Combustion optimization of ultra supercritical boiler based on artificial intelligence

Authors: Jie Li; Wenqi Zhong; Xi Chen; Shi Yan; Aibing Yu; Aibing Yu;

Combustion optimization of ultra supercritical boiler based on artificial intelligence

Abstract

Abstract A method for optimizing the combustion in an ultra-supercritical boiler is developed and evaluated in a 660 MWe ultra-supercritical coal fired power plant. In this method, Artificial Neural Networks (ANN) models are established for predicting the boiler operating and emission properties. To enhance the generalization of the ANN models, Computational Fluid Dynamics (CFD) simulation is performed to generate some data as training samples for ANN modeling, together with the historical operating data. The inputs of the ANN models are unit load, coal properties, excess air and air distribution scheme, and the outputs are thermal efficiency and NOx emission. Based on the ANN models, Genetic Algorithm (GA) is used to optimize the air distribution scheme to achieve a higher thermal efficiency and lower NOx emission simultaneously. The predictions of the thermal efficiency and NOx emissions show a good agreement with the plant data, with mean errors of 0.04% and 3.56 mg/Nm3, respectively. The results indicate that the use of CFD data can help generalize the ANN models. The application to a practical plant demonstrates that the proposed approach provides an effective tool for multi-objective optimization of pulverized-coal boiler performance with improved thermal efficiency and NOx emission control.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    103
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
103
Top 1%
Top 10%
Top 1%