Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della Ricer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Opportunities for power-to-Gas and Power-to-liquid in CO2-reduced energy scenarios: The Italian case

Authors: Sara Bellocchi; Marcello De Falco; Marco Gambini; Michele Manno; Tommaso Stilo; Michela Vellini;

Opportunities for power-to-Gas and Power-to-liquid in CO2-reduced energy scenarios: The Italian case

Abstract

Abstract Integration of renewable energy in the electricity market poses significant challenges on power grid management due to the volatility of these sources. In fact, the mismatch between renewable power generation and load curves, along with the need for grid stability, may lead to substantial curtailments when potential electricity supply exceeds demand. In this respect, the surplus from renewable energies can be conveniently exploited to produce hydrogen via electrolysis. This concept can be referred to as “Power-to-Gas” and “Power-to-Liquid” when synthetic grid gas and liquid fuels are respectively produced via syngas hydrogenation processes and is rapidly emerging as a promising measure in support of renewable energy penetration, leading to the decarbonisation of energy generation without affecting grid reliability. This study evaluates the impact of Power-to-Gas and Power-to-Liquid systems on future CO2-reduced scenarios, characterised by increasing shares of renewable energies and electric vehicles under a holistic Smart Energy System perspective. Results show potential synergies among crucial energy sectors in terms of CO2 emissions, curtailments and costs. Among the proposed options, synthetic grid gas produced by biomass gasification, and subsequent hydrogenation, leads to the best techno-economic scenario with a reduction of CO2 emission of 30% with negligible change in yearly total costs.

Country
Italy
Keywords

Settore ING-IND/09 - SISTEMI PER L'ENERGIA E L'AMBIENTE, Large-scale RES, 660, Smart energy system, Power-to-Ga, Power-to-Liquid, Settore ING-IND/25 - IMPIANTI CHIMICI, Electric vehicle, CO2 emissions reduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%
Green
hybrid