Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of particle size and temperature on gasification performance of coconut and palm kernel shells in downdraft fixed-bed reactor

Authors: Ahmad Zubair Yahaya; Mahendra Rao Somalu; Andanastuti Muchtar; Shaharin Anwar Sulaiman; Wan Ramli Wan Daud;

Effect of particle size and temperature on gasification performance of coconut and palm kernel shells in downdraft fixed-bed reactor

Abstract

Abstract Gasification of coconut shell (CS) and palm kernel shell (PKS) is conducted in a batch type downdraft fixed-bed reactor to evaluate the effect of particle size (1–3 mm, 4–7 mm, and 8–11 mm) and temperature (700, 800, and 900 °C) on gas composition and gasification performance. The response surface methodology integrated variance-optimal design is used to identify the optimum condition for gasification. Gas composition, which is measured using the biomass particle size of 1–11 mm at 700–900 °C, are 8.20–14.6 vol% (H2), 13.0–17.4 vol% (CO), 14.7–16.7 vol% (CO2), and 2.82–4.23 vol% (CH4) for CS and 7.01–13.3 vol% (H2), 13.3–17.8 vol% (CO), 14.9–17.1 vol% (CO2), and 2.39–3.90 vol% (CH4) for PKS. At similar conditions, the syngas higher heating value, dry gas yield, carbon conversion efficiency, and cold gas efficiency are 4.01–5.39 MJ/Nm3, 1.50–1.95 Nm3/kg, 52.2–75.9%, and 30.9–56.4% for CS, respectively, and 3.82–5.09 MJ/Nm3, 1.48–1.92 Nm3/kg, 59.0–81.5%, and 33.0–57.1% for PKS, respectively. Results reveal that temperature has a greater role than particle size in influencing the gasification reaction rate.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Top 1%
Top 10%
Top 1%