Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of cooling system design on the performance of the recompression CO2 cycle for concentrated solar power application

Authors: M. Monjurul Ehsan; Sam Duniam; Jishun Li; Zhiqiang Guan; Hal Gurgenci; Alexander Klimenko;

Effect of cooling system design on the performance of the recompression CO2 cycle for concentrated solar power application

Abstract

The thermal performance of a supercritical CO2 (sCO2) recompression cycle is expressively influenced by main compressor inlet temperature. Design of the cooling system is imperative since the compressor inlet temperature substantially influence the system performance. Due to nonlinear variation of both thermal and transport properties of the CO2 under critical condition, the cooling tower design and selection for the sCO2 cycle power plant is quite different from the power plants with steam cycle. The present work comprehensively investigates the effect of cooling system design on the optimal cycle performance under different operating condition. An iterative section method is applied while designing and optimizing the air-cooled heat exchanger bundles inside the tower. Prior to the design of natural draft dry cooling tower (NDDCT), an optimal operating condition is rectified at which the cycle efficiency is maximal. The tower performance is investigated by demonstrating unit height heat rejection and average heat rejection by each heat exchanger bundle. A detailed economic analysis of NDDCT is performed which takes account of capital cost, maintenance cost, annual cost, and specific investment cost. The thermo-economic assessment of the NDDCT is conducted by the influence of sCO2 inlet temperature inside the tower and variation of ambient air.

Country
Australia
Related Organizations
Keywords

Cooling tower, 2208 Electrical and Electronic Engineering, 2205 Civil and Structural Engineering, Recompression cycle, 2210 Mechanical Engineering, Supercritical CO2, 2215 Building and Construction, Heat exchanger, 2310 Pollution, 2209 Industrial and Manufacturing Engineering, Concentrated solar

Powered by OpenAIRE graph
Found an issue? Give us feedback