
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Performance analysis of a combined cold and power (CCP) system with exergy recovery from LNG-regasification

Abstract Liquefied Natural Gas (LNG) is becoming vital in relation to energy transition and fighting climate change. Because of its cryogenic temperature (111 K), LNG is an exergy “mine” that can be exploited in the regasification process for multiple industrial applications. But this exergy is usually wasted. This research presents a Combined Cold and Power (CCP) system with exergy recovery from LNG-regasification. This exergy is exploited for the combined production of electricity and low-temperature refrigeration distributed through a CO 2 District Cooling Network. These systems entail many benefits, but also pending challenges. The CCP system is modelled using real operation data, and its performance is analyzed and benchmarked against that of a cryogenic power plant, both at design and off-design operating conditions. The proposed CCP system reports an equivalent electricity saving of 139 kWh/t-LNG with an exergetic efficiency of 40%, turning into useful energy up to 64% of the maximum cold recoverable in the regasification process. The performance enhances as the heat source temperature rises. Higher LNG flow rates contribute to increase the electricity and refrigeration production, but irreversibilities also increase. Finally, findings show that a low LNG regasification pressure is preferable in spite of the negative effect on the power generation.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).32 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
