
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effective energy consumption forecasting using enhanced bagged echo state network

Abstract Precise analysis and forecasting of energy consumption not only affects energy security and environment of a nation but also provides a useful decision basis for policy makers. This study proposes a new enhanced optimization model based on the bagged echo state network improved by differential evolution algorithm to estimate energy consumption. Bagging is applied to reduce forecasting error and improve generalization of network. Further, three parameters of echo state network are optimized using differential evolution algorithm. Thus, the proposed model combines the merits of three techniques which are echo state network, bagging, and differential evolution algorithm. The proposed model is applied to two comparative examples and an extended application to verify its accuracy and reliability. Results of the comparative examples show the proposed model achieves better forecasting performance compared with basic echo state network and other existing popular models. Mean absolute percentage error of the proposed model is 0.215% for total energy consumption forecasting of China. Therefore, the proposed model can be a satisfactory tool for forecasting energy consumption because of its high accuracy and stability.
- Huazhong University of Science and Technology China (People's Republic of)
- Hubei University Of Economics China (People's Republic of)
- Hubei University China (People's Republic of)
- HUBEI UNIVERSITY China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).72 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
