
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Innovative non–oxidative methane dehydroaromatization via solar membrane reactor

Abstract A novel solar–driven Non–Oxidative Methane Dehydroaromatization (NO–MDA) system integrated with membrane reactor is proposed in this study. NO–MDA driven by solar energy is a promising method to directly product benzene and pure hydrogen, in which solar thermal energy is converted into chemical energy. In this study, kinetic and thermodynamic analyses of NO–MDA via hydrogen permeation membrane (HPM) reactor were conducted based on numerical simulation. The partial pressure, conversion rate and thermodynamic efficiency under different temperatures (600–800 °C) and permeate pressures (0.01–1 bar) were studied and analyzed. Pure hydrogen and a near complete conversion rate (99.9%) are theoretically obtained due to the separation of hydrogen via HPM reactor, which shifts the reaction equilibrium forward for higher conversion rate. The first–law thermodynamic efficiency, the solar–to–fuel efficiency, and the exergy efficiency can reach as high as 85.89%, 33.72%, and 88.12%, respectively. This study exhibits the feasibility of efficient NO–MDA via HPM reactor driven by solar energy.
- Seoul National University Korea (Republic of)
- Seoul National University Korea (Republic of)
- Wuhan University China (People's Republic of)
- Wuhan University China (People's Republic of)
- University of Tokyo Japan
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).27 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
