Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Design optimization of a hybrid solar-biomass plant to sustainably supply energy to industry: Methodology and case study

Authors: Ramchandra Bhandari; Mengesha Mamo; Fitsum Bekele Tilahun;

Design optimization of a hybrid solar-biomass plant to sustainably supply energy to industry: Methodology and case study

Abstract

Abstract To gain the benefits of solar-biomass cogeneration plant, supplying energy to industry, the design optimization procedure is required to holistically integrate economical, technical and environmental aspects. This entails formulation of a performance criterion that maximizes solar fraction, reduces investment cost, lowers thermal storage loss and puts less pressure on biomass resources. It is also necessary to consider factors influencing the plant’s performance while giving active role to industrial demand. This kind of optimization approach adaptively evolves as influences change and is not static. However, such a criterion is not yet part in many of the existing design optimization schemes. In this work, an alternative optimization approach that addresses the aforementioned issues is proposed. To this end, a molten salt biomass boiler is modeled in MATLAB and integrated to a solar plant model in TRNSYS. The resulting configuration is latter optimized in GenOpt to minimize biomass power utilization index (BPUI) and excess saturated steam generation (ESSG). Demonstrated by a case study, a plant efficiency of 31.5% with 23.5% solar gain is optimally designed resulting in about 0.094$/kWh levelized cost of generation. Furthermore, considering global power outage loss, the hybrid plant could be seen as a preferred industrial source of energy.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%
bronze