Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparative indexes, fuel characterization and thermogravimetric- Fourier transform infrared spectrometer-mass spectrogram (TG-FTIR-MS) analysis of microalga Nannochloropsis Oceanica under oxidative and inert torrefaction

Authors: Rupeng Wang; Shih-Hsin Ho; Wei Hsin Chen; Wei Hsin Chen; Wei Hsin Chen; Congyu Zhang;

Comparative indexes, fuel characterization and thermogravimetric- Fourier transform infrared spectrometer-mass spectrogram (TG-FTIR-MS) analysis of microalga Nannochloropsis Oceanica under oxidative and inert torrefaction

Abstract

Abstract The torrefaction performances of microalga Nannochloropsis Oceanica under oxidative and inert atmospheres are characterized and compared with each other based on several operating parameters. By conducting several comparative indexes, the results suggest that oxidative torrefaction is more capable of upgrading microalgae due to its relatively lower solid yield and energy input, as well as relatively higher enhancement factor and upgrading energy index. Compared to inert torrefaction, the indexes indicate that oxidative torrefaction at 250 °C for 30 min has higher energy yield (1.02 times) and energy efficiency (2.2 times) but whereas lower energy input (0.4 times). With increasing torrefaction severity, the pyrolysis curve gradually becomes smooth and shift to a high-temperature zone. The peak temperatures of torrefied microalgae present an increasing trend, especially in the oxidative atmosphere. After oxidative torrefaction, microalgal solid biofuel is upgraded as peat and lignite, from the viewpoint of elemental composition. Furthermore, oxidative torrefaction is more suitable than inert torrefaction for producing bio-oil which mainly contains dianhydromannitol, neophytadiene, and palmitoleic acid. The TG-FTIR-MS results uncover the pyrolysis characteristics and reactivity of torrefied microalgae, and elucidate that oxidative torrefied microalgae is more reactive.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Average
Top 10%