
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Ash characteristics of oxy-biomass combustion in a circulating fluidized bed with kaolin addition

Ash characteristics of oxy-biomass combustion in a circulating fluidized bed with kaolin addition
Abstract Biomass combustion in the oxy-fuel circulating fluidized bed is a promising technology to maximize the negative carbon dioxide emission and reduce pollutants emission in power plants. However, biomass ash related behaviors under oxy-combustion with kaolin additives still lack sufficient information. In this study, kaolin was used as an additive to manage ash problems during oxy-biomass combustion in a 0.1 MWth circulating fluidized bed combustion facility. Kaolin was fed at ratios of kaolin/wood pellet (wt./wt.): 0.21 and 0.25 by separately feeding or pre-mixing, respectively. The sampled ashes were characterized using X-ray fluorescence and X-ray diffraction analysis. Additionally, the potassium capture performance, slagging and fouling indices, attrition characteristics, and strength were also evaluated. The results revealed that potassium capture performance was improved by up to 24% at the ratio of kaolin/wood pellet (0.25) and kalsilite (KAlSiO4) within ash increased by adsorption on the metakaolin surface of gaseous potassium. The fouling formation decreased from 0.43 without kaolin to 0.07–0.15 with kaolin. In terms of oxy-fuel operation, SO2 emission was decreased when kaolin used, performing a high CO2 concentration of over 93 vol% and combustion efficiency of over 99%.
- Kunsan National University Korea (Republic of)
- Kunsan National University Korea (Republic of)
- Kier Group United Kingdom
- Korea Institute of Energy Research Korea (Republic of)
- Kier Group United Kingdom
1 Research products, page 1 of 1
- 2017IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).20 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
