Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparative analysis of different CHP systems using biogas for the cassava starch plants

Authors: Yongjun Yin; Shaoxu Chen; Xusheng Li; Bo Jiang; Joe RuHe Zhao; Guangzai Nong;

Comparative analysis of different CHP systems using biogas for the cassava starch plants

Abstract

Abstract Energy demands of a cassava starch plant (CSP) were investigated and modeled. Four combined heat and power (CHP) systems using biogas were evaluated and compared, including energy self-support, economic feasibility and environmental impacts. Assessment results indicated that CHP system with reciprocating internal-combustion engine (ICE-CHP) and micro turbine (MT-CHP) can meet all the energy demands of the CSP. ICE-CHP technologies obtained the best profit, followed by MT-CHP, B/T-CHP and common system. The four systems are economically feasible, ICE-CHP showed better economy than MT-CHP system. Both ICE-CHP and MT-CHP systems have the lowest environmental impacts comparing to other CHP systems in view of emissions. ICE-CHP should be suggested firstly considering the short payback period (4.57 year), the lowest environmental impacts and 100% of energy self-support. Boiler/Turbines CHP (B/T-CHP) will not be adopted as it is unable to supply all the electricity needs of the CSP. Plant availability shows the greatest impact on the payback period. If the investment cost of MT-CHP decreases by more than 12.7%, MT-CHP would have better economy than ICE-CHP. The results are helpful for the management of CSP to select the suitable CHP technology.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%