Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Processable and recyclable crosslinking solid-solid phase change materials based on dynamic disulfide covalent adaptable networks for thermal energy storage

Authors: Weibo Kong; Yunyun Yang; Anqian Yuan; Liang Jiang; Xiaowei Fu; Yuechuan Wang; Hualiang Xu; +2 Authors

Processable and recyclable crosslinking solid-solid phase change materials based on dynamic disulfide covalent adaptable networks for thermal energy storage

Abstract

Abstract Generally, the chemically crosslinking solid-solid phase change materials (PCMs) are fabricated to address the issues of leakage and poor mechanical properties of traditional PCMs. However, the solid-solid PCMs also bring environmental pollution and resources waste as the permanent chemically crosslinking polymers cannot be recycled and reprocessed once molded. Herein, we reported a dynamic-covalent- crosslinking PCMs (V-PCMs) consisting of polyethylene glycol (PEG) as phase change ingredient, polyaryl polymethylene isocyanate (PAPI) as crosslinking points and disulfide as dynamic bonds. The as-prepared V-PCMs can reversibly store and release heat via melting and crystallization of PEG chains, and exhibit anti-leakage performance and solid-solid phase change merit due to chemically crosslinking networks even above melting point (Tm) of PEG. Besides, the V-PCMs show recycling and reprocessing ability from association mechanism of dynamic disulfide bonds. Also, the recycled V-PCMs can reversibly store and release heat and exhibit solid-solid phase change characteristic as original V-PCMs. This method provides a promising way for the fabrication of chemically crosslinking solid-solid PCMs with recyclability and multi-functionalization.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    59
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
59
Top 1%
Top 10%
Top 1%