Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modified fly ash, a waste material from the energy industry, as a catalyst for the CO2 reduction to methane

Authors: Natalia Czuma; Bogdan Samojeden; Katarzyna Zarębska; Monika Motak; Patrick Da Costa;

Modified fly ash, a waste material from the energy industry, as a catalyst for the CO2 reduction to methane

Abstract

Abstract A novel approach was used as support for synthesis of fly ash derived catalyst from waste fly ashes from the energy sector was used as support in the preparation of Ni-catalysts for CO2 methanation. The catalysts were characterized by XRD, H2 -TPR, CO2 -TPD and N2 low-temperature nitrogen sorption. As a result of application of new approach using a ball-mill mechanical energy, carbon dioxide conversion to methane of 58% was obtained at 350 °C. The conversion long with economical aspects of catalyst preparation, including waste material reuse, leads to highly promising results. The results indicate that the catalyst for the methanation process can be easily obtained by the mechanical activation of waste from the energy sector. The chemical modification is more complicated and does not give significantly better results. This approach to waste transformation is innovative, ecological, and economical. It meets the assumptions of the circular economy concept and allows to reuse of waste materials.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%